Retinoblastoma protein phosphorylation at multiple sites is associated with neurofibrillary pathology in Alzheimer disease.
نویسندگان
چکیده
The re-expression of multiple cell cycle markers representing various cell cycle phases in postmitotic pyramidal neurons suggests that neurons in Alzheimer disease (AD) attempt to re-enter the cell cycle. Entry into the cell cycle requires activation of G1 to S phase cell cycle proteins, among which retinoblastoma protein (pRb) is a key regulator. pRb inhibits the transcription of cell cycle proteins in the nucleus of healthy cells by interaction and consequent blocking of the active site of E2F, dependent upon the phosphate stoichiometry and combination of the locations of their 16 potential phosphorylation sites on pRb. Therefore, to determine whether pRb is involved in the aberrant cell cycle phenotype in AD neurons, a systematic immunocytochemical evaluation of the phosphorylation status of pRb protein using antibodies specific for multiple phosphorylation sites (i.e., pSpT249/252, pS612, pS795, pS807, pS811 and pT821) was carried out in the hippocampal regions of brains from AD patients. Increased levels of phospho-pRb (ppRb) for all these phosphorylation sites were noted in the brains of AD patients as compared to control cases. More importantly, redistribution of ppRb from the nucleus to the cytoplasm of susceptible neurons, with significant localization in neurofibrillary tangles and neuritic plaques, was observed. Additional studies revealed extensive co-localization between phospho-p38 and ppRb, implicating that p38 activation may contribute to cell cycle abnormalities through pRb phosphorylation. Taken together, these data supports the concept of neuronal cell cycle re-entry in AD and indicates a crucial role for pRb in this process.
منابع مشابه
P 142: Air Pollution\'s Triggering Role in Tau Protein Hyper Phosphorylation; A Sign of Alzheimer Disease
Nowadays, air pollution is one of the major problems in developed and developing countries. In recent years, effects of air pollution on neuroinflammatory diseases such as Alzheimer disease and Parkinson disease have been studied. Researches on polluted cities citizens indicate increasing in central nervous system (CNS) inflammatory factors in comparison with clean cities; also air pollution ex...
متن کاملPhosphorylation of microtubule-associated protein tau: identification of the site for Ca2(+)-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles.
The microtubule array in neuronal cells undergoes extensive growth, dynamics and rearrangements during neurite outgrowth. While little is known about how these changes are regulated, microtubule-associated proteins (MAPs) including tau protein are likely to perform an important role. Tau is one of the MAPs in mammalian brain. When isolated it is usually a mixture of several isoforms containing ...
متن کاملThe influence of aging in one tauopathy: Alzheimer 's disease.
In this short review, the link between aging and the onset of Alzheimer 's disease is discussed. It has been widely suggested that aging is the greatest risk factor for Alzheimer 's disease,in which a failure in the insulin signal-transduction pathway could occur with age and, thereby, the assembly of senile plaques and neurofibrillary tangles (two aberrant structures present in Alzheimer 's di...
متن کاملMicrotubule-associated protein 2: monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles.
Neurofibrillary tangles (NFT) are the principal structural alteration of neuronal cell bodies in Alzheimer disease as well as in normal aging of the human brain. While the ultrastructure of these intraneuronal lesions has been extensively studied, the biochemical composition of the fibers comprising the NFT is unknown. We report the production of three monoclonal antibodies against the microtub...
متن کاملThe cell cycle regulator phosphorylated retinoblastoma protein is associated with tau pathology in several tauopathies.
Retinoblastoma protein (pRb) is a ubiquitous 928-amino acid cell cycle regulatory molecule with diverse biologic activities. One critical function of pRb is the control of the G1-to-S phase checkpoint of the cell cycle. In the hypophosphorylated state, pRb suppresses the activity of E2F transcription factors thereby inhibiting transcription of cell cycle-promoting genes. On phosphorylation, pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of clinical and experimental pathology
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2008